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New Results from JLAB and HERMES since SPIN 2000

Polarised Quark Distributions

• The complete HERMES data set on H and D
from 1996-2000

• Extraction of quark polarisations based on
Monte Carlo “purities”

Single-Spin Asymmetries

• A glimpse at the rich phenomenology

• SSAs from longitudinally polarised target
protons at JLAB and HERMES

• Beam-helicity SSAs from unpolarised protons
at JLAB and HERMES

• HERMES SSAs from longitudinally polarised
deuterons
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The �l + �p Experiments

HERMES

• 27.5 GeV �e± (P=55%) on pure atomic �H or �D targets

• Luminosity = 0.16 fb−1 per year polarised + 0.5 fb−1 per year
unpolarised

• Spectrometer has ∼ 1% resolution, ∼ 20% acceptance for
semi-inclusive hadrons

• Complete hadron identification

JLAB

• 6 GeV �e− (P=70%) ,

• Large acceptance spectrometer (CLAS)
– Only longitudinal target polarization

• High luminosity for unpolarised targets

COMPASS

• 100-200 GeV �µ± (P=80%) on N�H3 (f = 0.18) or
6 �Li�D (P=0.5, f = 0.5) targets

• Luminosity � 2 fb−1 per year
– Target dilution ⇒ Figure of merit similar to HERMES

• Complete hadron identification being stabilized
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Spin-dependent Deep-Inelastic Scattering

In DIS with polarised lepton beams and polarised nucleon targets,
one probes the polarisation of the quarks in the nucleon.
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There are no neutrino DIS measurements on polarised targets (yet!)
⇒ Inclusive DIS can’t distinguish quark from anti-quark

Measurements of g1 on both proton and neutron (deuteron) targets fix
only the non-singlet distribution ∆q3 among:

∆q3(x, Q2) = ∆u + ∆ū − ∆d − ∆d̄ = 6(gp
1 − gn

1 ),

∆q8(x, Q2) = ∆u + ∆ū + ∆d + ∆d̄ − 2(∆s + ∆s̄),

∆Σ(x, Q
2
) = ∆u + ∆ū + ∆d + ∆d̄ + ∆s + ∆s̄

To the extent that ∆s + ∆s̄ is negligible, ∆u + ∆ū and ∆d + ∆d̄ are
also strongly constrained.

Hyperon β-decay + SU(3)-symmetry constrains first moment of
∆q8

⇒ ∆Σ is small and ∆s is negative.
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Quark Polarisations from Semi-Inclusive DIS

In semi-inclusive DIS, a hadron h is also detected in the kinematic
regime associated with hadronization of the struck quark:
z ≡ Eh/ν > 0.2
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Flavour Tagging The flavour content of the final state hadrons is
related to the flavour of the struck quark through the agency of the
fragmentation functions Dh

q (z, Q2) .
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Is HERMES Fragmentation “Universal”?

Compare pion multiplicities: HERMES versus EMC
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Good agreement, despite order of magnitude difference in
energy
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Contamination from Target Fragmentation?

Thanks to Piet Mulders. . .
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• Usual Berger criterion for separation of current and target
fragmentation is δη > 2

• This is compatible with HERMES cut z > 0.2 for pions
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Asymmetries On The Proton
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• 1996–97 data: threshold Čerenkov counter identifies π±

• 0.2 < z < 0.7

• Asymmetries are independent of z in this range
⇒ No evidence of target fragmentation
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Asymmetries On The Deuteron

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.1 0.7
x

A1,d

HERMES preliminary

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

A
h+

1,d

HERMES prelim.
SMC

0.02 0.1 0.7
x

A
h-

1,d

HERMES prelim.
SMC

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
π+
1,d

HERMES prelim.

0.02 0.1 0.7
x

A
π−
1,d

HERMES prelim.

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
K+

1,d

HERMES prelim.

0.02 0.1 0.7
x

A
K-

1,d

HERMES prelim.

• 1998–2000 data: RICH detector identifies π± and K±

• 0.2 < z < 0.7

• Asymmetries are independent of z in this range
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Unfolding Kinematic Migration

Radiative and instrumental smearing

Inclusive data:

Smearing within acceptance →

Mostly radiative elastic tail →
observed x-bins

tr
ue

 x
-b

in
s

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Semi-Inclusive data:

Smearing within acceptance →

Smearing into acceptance →
observed x-bins
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• Bin fractions are shuffled back to their “true parentage” as identified
by MC simulation

• No parametric fits to the data are involved

• Resulting (small) statistical correlations between bins are known

• Statistical uncertainties are increased by up to a factor of 2
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Quark Polarisations Extracted via Purities

In leading order:
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Effective Purities accounting for experimental acceptance may be
computed via Monte Carlo based on the JETSET model for
fragmentation
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Purities for Charged Hadrons
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• An adequate degree of orthogonality is provided:

– u versus d from h+

– valence versus sea from hadron charge
– ū versus d̄ from h−

• The u-quark dominates h+ production from both proton
and neutron targets (which is good!)

• Production of h− from sea quarks is relatively larger
than h+, and again dominated by ū quarks
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Purities for Charged Kaons
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• Kaons have about 10% sensitivity to the strange sea

• Systematic uncertainties are presently large due to both
fragmentation functions and unpolarised parton
densities
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Quark Polarisations at LO
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Polarised Quark Densities at LO
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• Unpol. PDF: CTEQ5 LO
• Strange sea polarisation: ∆s � 0



Andy Miller, SPIN2002 BNL

Symmetry of the Polarised Light Sea
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χQSM
[EPJ C14, 147 (2000)]
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[EPJ C23, 487 (2002)]

• The HERMES data are consistent with flavour symmetry

• The data disfavour χQSM of Dressler et al.
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COMPASS Projections

HERMES
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• SMC results consistent with HERMES 96-
00, but extend to x = 0.04.

• COMPASS will also extend to lower x, test
systematics (fragmentation model)

• See contributed talk by F. Tessarotto on
Wednesday afternoon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.1

0

0.1

0.2

0.3

-0.1

0

0.1

0.2

0.3

-0.2

-0.1

0

0.1

0.2

10
-3

10
-2

10
-1

1

x    s

COMPASS

x

∆

x    d∆ v

vx    u

_
∆x    q

∆



Andy Miller, SPIN2002 BNL

Quark Polarisations: Summary

Semi-inclusive Deep-Inelastic Scattering
(flavour tagging)

• HERMES has released 1998–2002 SIDIS asymmetries
on deuterium for identified π± and K±

• In combination with 1996–97 data on hydrogen, the
statistics is sufficient to extract the polarisations of all 3
sea flavours

• The results from a preliminary LO extraction using tuned
JETSET fragmentation are consistent with previous
inclusive and SIDIS analyses, but have much improved
precision

• ∆s extracted in LO is non-negative

• The extracted light sea flavour asymmetry ∆ū − ∆d̄
disfavours the χQSM model

• This extraction is unaffected by exclusion of the
inclusive data set
⇒ supports this model for pure current fragmentation

• See contributed talk by Antje Brüll on Tuesday afternoon
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Quark Polarisations: Outlook

• Pion and Kaon multiplicities will become available from
a much larger HERMES unpolarised data set to better
constrain the fragmentation functions

• HERMES with COMPASS will span a large Q2 range to
test systematics

• COMPASS will cover the small-x range to x = 0.004

• Quality of existing SIDIS data represents nearly the limit
for the present generation of facilities

• Should the Next-Generation Facility be designed to
measure the ratios of cross section differences that
provide stronger constraints on parton polarisations and
fragmentation functions?
(Christova & Leader, Nucl. Phys. B 607 (2001) 369)
e.g.

∆σp ± ∆σn

σp ± σn

and
σh±h̄

p ± σh±h̄
n

σDIS
p ± σDIS

n
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Single-Spin Asymmetries in SIDIS

A brief review

• In 1999, HERMES and SMC released single-spin asymmetries that
depend on the azimuthal orientation of the hadron’s P⊥

• The target polarisation was “transverse” for SMC, “longitudinal” for
HERMES

• In either case, the linear polarisation of the virtual photon in the
lepton plane selects transverse polarisation of the struck quark
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• In leading twist, P⊥ can arise from two sources:
– Primordial pT of the quark in the target
– kT produced in the fragmentation process

• A single-spin asymmetry requires the participation of some
Time-Odd object correlating that pT or kT with some spin

• Theoretical explanations of the SIDIS asymmetries have focussed
on a T-odd fragmentation process (Collins Effect)

• Wonderful implication! This “quark polarimeter” can provide access
to the otherwise-inscrutable transversity distribution
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The SIDIS SSA Plot Thickens

Brodsky, Hwang & Schmidt present a model calculation
including a short-distance “final state interaction” between
struck quark and spectator:

S

current
quark jet

final state
interaction

spectator
system

proton

e–

γ*

e–

quark

• They show that this mechanism can generate a
single-(transverse)spin azimuthal asymmetry

• Contrary to appearances, it’s leading twist

John Collins’ Revelation:

• This mechanism is the old Sivers Effect in disguise.

• The model calculation reveals that this mechanism does
not violate fundamental time reversal invariance

• Ergo the Sivers mechanism is allowed after all !
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Resolution and Reconciliation

New Theoretical Understanding

There exist three leading-twist mechanisms that can generate
single-spin asymmetries (John Collins):

• Transversity × “Collins effect”: Finding in a polarised target nucleon
a transverse-polarised quark, which fragments with a transverse
momentum correlated with that quark polarisation

1h = - × H1 = -

chiral-odd, T-even chiral-odd, T-odd

• “Sivers effect”: Finding in a transverse-polarised target nucleon a
quark with correlated primordial transverse momentum

=1T -f ⊥ × 1D =

chiral-even, T-odd chiral-even, T-even

• (Boer & Mulders) Finding in an unpolarised target nucleon a quark
with correlated transverse polarisation and primordial transverse
momentum

-=1h × H1 = -

chiral-odd, T-odd chiral-odd, T-odd

Only the first two mechanisms can generate target spin asymmetries
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SSAs: Which is the Responsible Mechanism?

• Model calculations show distinctive kinematic signatures

• Boglione & Mulders, Phys. Rev. D 60 (1999) 054007

• Based on parameterizations fitted to pp̄ → πX SSAs

Collins Effect
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Sorting Out the Azimuthal Moments

• Chiral structure of DF × FF : even

• Time reversal structure of DF × FF : odd

T-even DF T-odd FF
chirality chirality

even odd even odd
U f1 H⊥

1

twist 2 L g1L h
⊥(1)
1L

T g1T h1 h⊥
1T D⊥

1T

U f⊥ e H
twist 3 L g⊥L hL D⊥

L EL

T gT g⊥T hT h⊥
T DT ET

〈sinφ〉UL ∝ SL
M

Q

∑
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e2
ax[ha
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1 (z) − xh
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z
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Lorentz covariance: hL(x) = h1(x) − d
dx
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⊥(1)
1L (x)

H̃(z)
z

=
d
dz

[zH
⊥(1)
1 (z)]

‘Longitudinally’ polarised target: ST << SL



Andy Miller, SPIN2002 BNL

From a Dictionary

Phenomenology (noun):

A philosophical doctrine proposed by Edmund Husserl
based on the study of human experience in which
considerations of objective reality are not taken into
account.
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z dependence of the SSAs
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The arbitrarily normalized curves are from
Bacchetta, Kundu, Metz & Mulders hep-ph/0206309

• They calculate the Collins function H
⊥(1)
1 (z) at the

one-loop level in a chiral-invariant model

• Their z-dependence is consistent with the data

• Their model predicts azimuthal asymmetries for
e+e− → 2 jets up to of order 5%.

The model of Oganessyan et al. Nucl.Phys. A689 (2001) 784,
assuming h

⊥(1)
1L = 0 ⇒ hL = h1 and using a parametric

model for H
⊥(1)
1 (z), results in a very similar curve for the

HERMES kinematics



Andy Miller, SPIN2002 BNL

SSAs on Proton and Deuteron
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Model Calculations

χ Quark Soliton Model:
Efremov, Goeke & Schweitzer (Eur. Phys. J. C 24 (2002) 407)

-0.02

0

0.02

0.04

0.06

0 0.1 0.2 0.3

x

A
U

L

si
n

φ

e d
→

 → e π X

π+

π-

π0

0

0.025

0.05

0.075

0.1

0 0.1 0.2 0.3

xB

A
U

L

si
n

φ

HERMES PRELIMINARY

e d
→

 → e K+ X

K+

0.2<z<0.7

Assumptions for the calculations:

• h1 from the χ Quark Soliton Model

• hs
1 = hs̄

1 = 0

• h̃L = 0 (neglect interaction-dependent part of hL)

• Collins function parameterised to fit HERMES proton data
(and “optimistic” result from DELPHI e+e− → 2 jets):

〈H⊥(1)
1 〉

〈D1〉 = (12.5 ± 1.4)%

• N.B. There was previously a sign error, resulting in a Collins
function only half this size
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Beam Helicity Asymmetries

• Asin φ
LU is also understood to be generated by the Collins

fragmentation function: ∝ e(x) × H
⊥(1)
1 (z)

• e(x) is a twist-3 chiral-odd distribution function whose
first moment is related to the pion-nucleon σ term

∫ 1

−1

dx[eu + ed](x) =
σ

mav

mav ≡ 1
2
(mu + md) � 5MeV
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No x-dependence of the asymmetry is observed.
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Extracting e(x)

Efremov, Goeke & Schweitzer (hep-ph/0208124)

• As before, used H
⊥(1)
1 (z) from analysis of HERMES

Asin φ
UL and DELPHI e+e− → 2 jets:

• e(x) was extracted from the CLAS data for Asin φ
LU :
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Status: Single-Spin Asymmetries

• SIDIS SSAs measured up to now involving “longitudinal”
target spin have ambiguous interpretations

• Their z dependence suggest that the Collins
fragmentation function is the responsible T-odd object

• Data being recorded now by HERMES and COMPASS

with transverse target polarisation can distinguish
leading-twist mechanisms through azimuthal
dependence of the asymmetry:

– Sivers effect depends on the azimuthal angle
difference between the target spin axis and hadron
plane ∝ sin(θl

h − θl
S)

– Collins effect depends on the sum of these angles
relative to the lepton scattering plane: ∝ sin(θl

h + θl
S)

• If the Collins effect is confirmed to be dominant, the first
measurements of transversity can be extracted

• For more theoretical details, please see the plenary talk
by Phillip Ratcliffe on Friday morning
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Semi-Exclusive Asymmetries
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HERMES Preliminary

• There exists no factorization theorem for exclusive meson
production by transverse photons

• AUL at the exclusive limit involves non-leading twist and
longitudinal-transverse interference

• One gets the impression that non-leading twist becomes dominant
as z increases above 0.7

• For a full explanation of other exclusive reactions, please see the
plenary talk by Marc Vanderhaeghen on Thursday morning

• Even larger asymmetries AUT are predicted for exclusive pion
production from a transversely-polarised target

• They arise in leading twist and can be interpreted in the light of a
factorization theorem for longitudinal production
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Conclusions

• The present DIS facilities are just adequate to reveal
abundant evidence for a rich future for this field

• The interplay of experiment and phenomenology is
wonderfully fertile

• There is an urgent need for a new high-energy
high-luminosity facility designed for precise
measurements of SIDIS and exclusive reactions


